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Abstract

This paper presents a new approach for multiplicative noise removal in SAR images based on sparse coding by dictionary
learning and collaborative filtering. First, an affinity net is formed by clustering log-similar image patches where a cluster
is represented as a node in the net. For each cluster, an under-complete dictionary is computed using the alternative
decision method that iteratively updates the dictionary and the sparse coefficients. The nodes belonging to the same
cluster are then reconstructed by a sparse combination of the corresponding dictionary atoms. The reconstructed patches
are finally collaboratively aggregated to build the denoised image. Experimental results demonstrate superior despeckle
filtering performance.

1 Introduction

Synthetic Aperture Radar (SAR) images are produced by
transmitting electromagnetic waves and coherently inte-
grating the received pulses. Because of the nature of data
acquisition, SAR images are inherently affected by speckle
noise and artifacts. Image despeckling problem has been
well studied over the years [1, 2, 3, 4, 5, 6, 11] and it is still
a popular research area thanks to the recently introduced
concepts of nonlocal means [7] and dictionary learning [8].
Speckle is often modeled as multiplicative noise given as
follows

yk = xk ∗ zk (1)

where yk, xk and zk correspond to the contaminated inten-
sity, the original intensity, and the noise level of the k-th
pixel, respectively. Several methods have suggested first
using a log transform to convert the multiplicative noise
into an additive representation and then to apply additive
noise filtering strategies.
The wavelet shrinkage techniques make use of a set of
predefined complete wavelet bases (decimated and undeci-
mated) on the log-intensity image where the wavelet trans-
form coefficients are thresholded (sometimes called as cor-
ing) in an adaptive fashion to remove the higher frequency
variation, which is typically assumed to be the noise. In-
stead of using complete bases, Foucher [2] extracts a global
over-complete dictionary from the given data and imposes
sparsity on the representation in order to suppress the inco-
herent noise. Even though it may generate slightly better
results than the wavelet shrinkage techniques for Gaussian
noise, the use of a single over-complete dictionary causes
over-smoothing especially when the input vs reconstruc-
tion blending parameter is not preset accurately.
Recently, Delledale et.al [3] introduced a probabilistic
patch based (PPB) filter based on the nonlocal means ap-
proach, posing the denoising task as a weighted maximum
likelihood estimation problem. The nonlocal means ap-
proach estimates a pixel by computing the weighted av-

erage of a set other patches in the image. These weights
are directly proportional to the similarity of the patch sur-
rounding the reference pixel and the patches surrounding
the candidate pixels in a preset search window. The idea
is to refine iteratively these weights by including patches
from the estimate of the image parameters. PPB can cope
with non-Gaussian noise; however, it also removes fine and
low-intensity details.
To prevent from over-smoothing and removal of important
details, here we propose an alternative strategy to suppress
multiplicative noise. We take advantage of locally adap-
tive dictionary learning on an affinity net of log-similar
image patches in a collaborative filtering framework. Our
intuition is that the use of under-complete dictionaries for
patch clusters would establish flexible representations of
the local appearance variations while efficiently rejecting
the outliers, and the aggregation of similar patch recon-
structions would provide texture consistency not only over
the local patch but also over the entire image. In other
words, the fine and statistically meaningful details are pre-
served through the cluster dictionaries and projected back
on the denoised image, and the incoherent appearances are
restrained through the collaborative aggregation process.

2 SRAN Algorithm

Since the input image is contaminated with the multiplica-
tive noise, we first apply a log-transform to use additive fil-
tering in the log-intensity domain instead of multiplicative
filtering in the intensity domain. We construct an appear-
ance similarity graph, called as affinity net, for the log-
transformed image. In this affinity net, each node corre-
sponds to an image patch and each vertex to the similarity
between two patches.
For each node, we find the cluster of similar nodes. We
form a cluster matrix and decompose it into a linear func-
tion (matrix multiplication) of a codebook (dictionary) and
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its sparse coding coefficients. The dictionary is designed
to best represent the coherent variations along same pixel
locations in the cluster. To achieve this we set the size of
the dictionary smaller than the rank of the cluster matrix.
As a result, we represent and filter each cluster by its own
unique small under-complete dictionary.

Figure 1: Schematic of our SRAN algorithm.

After learning the dictionary for the current cluster, we re-
construct the nodes in the cluster by the orthogonal match-
ing pursuit to obtain the sparse representations. Since a
single node could participate in different clusters, there
will be overlaps among the clusters, thus, we obtain mul-
tiple estimates for a pixel. We compute the final denoised
image by aggregating these multiple estimates; this aggre-
gation imposes a strong collaborative constraint and effi-
ciently limits the amount of the inconsistent variations due
to the noise without excessive smoothing. In order to fur-
ther improve the initial affinity net construction, we use the
filtered image to determine the clusters and apply sparse
reconstruction and aggregation on the non-filtered image.
Figure 1 illustrates these filtering stages.

2.1 Affinity Net

The affinity net is a weighted undirected graph where the
weights correspond to the similarity between the patches.
We arrange the pixels of a patch into a vector form hence
our feature space is the intensity values where a point in
the feature space represents a particular patch appearance.
We define the similarity between two node vectors pi and
pj as

ω(pi, pj) =< pi, pj >=

K∑

k=1

pi,kpj,k (2)

where k is the pixel index with respect to the patch grid and
K is the patch size, i.e. the number of pixels contained in a
patch. Although it is possible to use other metrics (e.g. �1
weights, frequency features, etc.) to measure the similarity
between patches, we preferred the dot product to not bias
for any particular intensity and pixel position.
We use the affinity net to learn a locally adapting dictio-
nary for each node. However, using the entire affinity net
to learn that many dictionaries would be computationally
prohibitive since the affinity net contains as many clusters
as the number of image pixels and it is fully connected.
In order to decrease the computational load drastically and
to concentrate on more relevant samples, we cluster nodes
by keeping a maximum of m vertices that have sufficiently

high weights w(pi, pj) > τ within a search window of ra-
dius r. A cluster ci is denoted as

ci =
{

pj : ω(pi, pj) > τ, i = 1, .., n
}

(3)

for n pixels in image Y . Clustering process puts the nodes
having close coordinates together in the feature space. We
empirically observed that the noise removal performance is
not sensitive to the value of τ as long as most clusters con-
tain 10 to 100 patches. If the affinity between two nodes
is high, a node is attached to the cluster of the other node
as illustrated in Fig. 2. Depending on the self-similarity
of the image, clusters can be in different sizes. A refer-
ence node might not contain any similar nodes and hence
the cluster size will be one. Also, a single node could be
present in one or more clusters and participate in filtering
of each cluster they are present. In this case, we will obtain
multiple estimates of a node.

Figure 2: Illustration of an affinity net.

To obtain a more robust similarity measurement and clus-
tering, we construct the affinity net on the filtered result of
our method. In other words, we iterate our algorithm to
refine the affinity net weights: the first time to get an ini-
tial estimate, and the second time to find the final denoised
image using the initial estimate. Alternatively, it is also
possible to apply a hard thresholding scheme (for instance,
the first stage of [10]) to get the initial estimate.

2.2 Sparse Reconstruction

For each the affinity net cluster ci, we form a cluster ma-
trix CM×K

i and decompose it into a linear function of a
dictionary DM×d

i and its sparse coefficients Xd×K
i , where

M is the number of nodes in the cluster, d is the number
of atoms in the dictionary, and K is the number of pixels
in the patch. We arrange the column vectors pi of the clus-
ter nodes into a cluster matrix as Ci = [.., pi, ..]

T . In Ci,
each row corresponds to cluster node including the refer-
ence node. The number of columns in this matrix is the di-
mensionality (size) of the patch, while the number of rows
is the number of patches in the cluster.
As opposed to the traditional column-wise ordering, we
use the row-wise ordering before learning the dictionary.
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Our intuition here is that the variation along the columns,
that is, the intensity variation of the same pixel locations
across the similar patches, should be very small since the
patches are all similar. A pixel intensity that does not com-
ply with its references in the other patches in the cluster
should not be considered as a representative in the dictio-
nary.
Note that we are not aiming for a perfect reconstruction but
rather elimination of the inconsistent pixel intensities by a
linear combination of a few atoms in the dictionary. Be-
cause of this special row-wise structure of the cluster ma-
trix, a small dictionary can successfully capture the coher-
ent pixel intensity changes. Our cluster dictionary is there-
fore significantly under-complete; the number of columns
d (and the maximum rank of the dictionary) is less than the
patch size d << K.
We jointly learn the dictionary and the sparse coefficients
by alternating between a sparse coding stage and a dictio-
nary update stage to solve the optimization problem

D∗
i , X

∗
i = arg min

Di,Xi

||xj ||0 , ∀j ||Ci −DiXi||22 ≤ ε (4)

where xj is the coefficient column vector corresponding
to pixel j in the patch grid and ε is the maximum allowed
sparsity. We set the initial dictionary matrix with d ran-
dom and �2 normalized columns of Ci. Alternatively, the
k-means clustering (with d centers) can be applied to clus-
ter nodes to obtain the initial dictionary.
In the sparse coding stage, we use the orthogonal matching
pursuit to compute the representation vectors xj . We up-
date the dictionary one column at a time by first defining
the group of rows (pixels) that use this atom then comput-
ing the overall representation error matrix for this group
without using the current atom, and then applying singular
value decomposition to assign the first column of the left
decomposition matrix as the new updated atom.
For the clusters that the number of nodes is very small (e.g.
M < 4), we apply the Wiener in the second time applica-
tion of our algorithm. We estimate the noise variance from
the difference between the first time application result and
the original noisy image.
After the dictionary learning and sparse coefficient com-
putation, we have the new cluster matrix C∗

i . The rows
of C∗

i are the reconstructed patches. We assign these re-
constructed patches to the respective locations from where
they are extracted. Because patches are overlapping and a
patch may belong to multiple clusters, there are multiple
estimates for a given pixel. The final estimate at a pixel
is obtained by computing the average of all computed es-
timates. This collaborative aggregation enables preserving
commonly shared patterns and rejecting speckle noise at
the same time.
Since the noisy image is log-transformed in the first step,
we subtract the nonzero mean [9] of the noise and take
the exponent of the final estimate to produce the filtered
result [4]. The above procedure is summarized in the fol-
lowing algorithm.

Input: noisy image log Y , initial estimate Y0 = Y
Output: denoised image I
cluster patches pi ∈ Y0 → ci
for each ci do

arrange pi ∈ Y (not Y0) into cluster matrix Ci using
ω(pi, pj) from Y0

if M < 4 and first run then

C∗
i ← Wiener(Ci)

else

C∗
i = D∗

i , X
∗
i ← Eq. 4

end if

end for

Y0 ← back project and aggregate C∗
i .

second run: subtract nonzero mean, I = expY0 .

3 Experimental Results

For quantitative assessment we tested the SRAN on natu-
ral images and for qualitative evaluation we used real SAR
data, which lack a ground truth and hence the quality of
filtering is generally observed by visual inspection. For
natural images, we have access to the original clean im-
age. We compare our method against the iterative and
the non-iterative PPB [3], Foucher’s K-SVD based speckle
removal [2], and the log-BM3D filter [10] (also reported
in [11]). These filters report the best multiplicative noise
removal performance in the recent literature.
For multiplicative noise simulation, we considered one-
look L = 1 SAR scenario where we modeled the noise
as a Nakagami-Rayleigh distribution [9]. We set the patch
size K = 64 = 8×8 and the search range r = 39. We lim-
ited the minimum similarity between nodes to τ = 0.002
and the maximum number of similar nodes in a cluster to
m = 400. We used a simple hard thresholding scheme
suggested in [10] to obtain the initial estimate.
To investigate the performance on the natural images we
used the Structural Similarity Index Metric (SSIM), which
is highly popular due to its consistency with the human
eye perception. SSIM concerns luminance, contrast and
structure and aims to evaluate the perceptual quality of an
approximate image comparing to the original one.
Figure 4 show sample results, and Table 1 summarizes the
SSIM and PSNR scores where the best scores are indi-
cated in bold. From the table it is evident that the SRAN
filter performs better than the Foucher [2] and the non-
iterative PPB filters. When we compare the PSNR values,
our method is +2 dB better than Foucher and gives compa-
rable scores to the iterative PPB on average. To our advan-
tage, SRAN is qualitatively more accurate than all other
filters (including iterative PPB) at preserving fine details.
We also show results for a sample SAR image obtained
from SANDIA website [12]. Since there is no ground truth
for SAR data, we rely on visual inspection to compare dif-
ferent techniques. As we can see, SRAN does an excellent
job in preserving the details particularly around the sta-
dium and roads.
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original noisy Foucher PPB PPB 25 iter. log-BM3D SRAN

Figure 4: Foucher’s method fails to remove despeckle noise effectively: it causes too much blur and uneven response
causing artificial texture in smooth regions. PPB and PPB with 25 iteration both over-smoothen the fine texture and remove
important details as can be seen in the mouth region. PPB with 25 iterations on the other hand, produces undesirable
hallucinated textures as visible in the over emphasized white pixels around the pupil. Log-BM3D causes blocky blobs
and tends to blur low intensity texture. Qualitatively, SRAN results are preferable to all others.

4 Conclusion

We presented a SAR speckle filter based on the adaptive
dictionary learning on the affinity net. Instead of a single
over-complete dictionary, our filter uses multiple under-
complete dictionaries for patch clusters. SRAN provides
quantitative scores on par with or higher than the state-of-
the-art, yet qualitatively superior performance.

Table 1: PSNR and SSIM comparisons of various filters
PSNR / SSIM Barbara Boat House Lena

Noisy -1.05
0.19

-2.97
0.15

-3.57
0.09

-2.43
0.12

Foucher [2] 8.26
0.55

7.78
0.54

8.13
0.64

9.74
0.67

PPB [3] 9.80
0.60

8.64
0.53

9.25
0.59

11.06
0.63

PPB (iter.) [3] 10.67
0.65

9.52
0.57

10.59
0.64

12.28
0.68

log-BM3D [10]∗ 9.46
0.63

9.02
0.59

9.90
0.73

11.08
0.73

SRAN 10.80
0.68

9.46
0.59

10.96
0.67

11.84
0.70

* Similar version is presented in [11].

original Foucher [2]

PPB iterative [3] SRAN

Figure 3: Only SRAN preserves important details.
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